EXACT MATCHING IN IMAGE DATABASES

Peter Bosch, Alex van Ballegooij, Arjen P. de Vries, Martin Kersten

Center for Mathematics and Computer Science (CW1), Amsterdam, The Netherlands

ABSTRACT

We believe there is a niche for exact sub-image searching in im-
age databases. When only a sub-image is searched for, traditional
image searching approaches fail because the sub-image features
usually represent only a small fraction of the global image fea-
tures. Said differently: it is difficult to find the sub-image in the
global features. We present a new technique to find sub-images in a
(possibly large) image database. The users articulate their interest
in a sub-image, i.e. an object within an image, in a so-called pre-
cise multi-spot query. We search our spatially oriented color-based
image database image-by-image for matches with this multi-spot
query.

1. INTRODUCTION

We argue that by exactly formulating sub-image queries, in con-
trast to whole image queries, users are able to retrieve qualitatively
better results from an image database compared to traditional ap-
proaches. In our system, users formulate image queries based on
colors, shapes and spatial locations. They select ranges from sam-
ple images they value highly in the form of image spots and within
these spots they select what they find interesting in terms of colors
and shapes. The spatial inter-relation of a number of these spots
in the same image is used to tic together various parts of an object
and it constitutes an extra search constraint.

Once a query is formulated, we use our search engine to match
the query in an exact manner in our image database. Our im-
age database stores for all images it keeps, coloring information
and spatial location of colors. Our image search engine then it-
eratively examines each image sub-area in our database against
the multi-spot query and sclects those that satisfy the query fully.
Hence, contrary to existing approaches, our search engine is an
exact matching search algorithm.

Many approaches and systems today make use of global im-
age features. At best, in those systems, users articulate a query
based on their interest (i.e., local features), and the image search
engine matches the local features onto global image features. Such
global image features are often pre-calculated and are stored in a
database as a feature vector. Searching becomes a simple matter
of comparing the local features with a global image feature vector.
Although such an approach deems simple and straightforward, it
is, in our view, not a solution to finding sub-image areas. If, for
example, a user is trying to find a face in an image, this face often
represents a small fraction of the entire image. It is quite likely
that other areas of the image dominate the feature vector thereby
reducing the chance of finding the sub-image.

Our approach is an attempt in making a general image search
engine, which can be used to search for sub-image features through
colors. We have tried to stay away from image domain specific
features, and instead build a search engine with which all kinds

of domain specific image search engines can be built. All inter-
nal search policies except those related to image index storage are
available for and alterable by users: every part of the search can
be directed and controlled through user-scttable parameters. The
reason for exposing these policies to the surface is our experience
showing that hidden search policies inside the engine often clut-
ter the search results: we have had more than a single occasion in
which we traced search results back to policy decisions insidc the
scarch engine rather than image features.

Our system stores the local spatial-based image features (i.e.
spatial color information). For each image, we store a quad-tree
representation of the dominant colors of the image. Hence, an im-
age can be rebuilt by traversing the quad tree. The storage mecha-
nisms are described separately [3, 2]. Our system also implements
our search engine that drives the spot-based image search opera-
tions through the stored coloring information.

To find images in our database, users need to formulate pre-
cise image-spot queries themselves. Although it can be quite cum-
bersome to formulate such queries — users have to remember the
interesting features for a particular domain themselves — it is also
cnlightening: by analyzing the results on queries, users learn why
their query led to the found results.

2. RELATED WORK

Many image retrieval systems use the (color) histogram approach
for matching (parts of) images. In the histogram approach a his-
togram is constructed from the image and images are compared
using a distance function. Examples of this distance function are
the L, distance metric as used by Swain et al. [14] or a more ¢lab-
orate distance function such as the weighted quadratic distance
function [10].

QBIC is a system with which users can query, for example,
an image database and scarch for colors, textures and shapes [6].
Users can query the database through ‘query by cxample,” or can
actually look for particular color or texture component in the im-
ages through a color or texture histogram search. (Weighted) Eu-
clidean distance functions are used to combine the multi-dimensional
vectors.

VisualSEEk [11] implements a segmentation approach where
all similarly colored regions are extracted from the image. All
regions found can be used as queries. The images are extracted by
iterating over all possible combinations in a strongly reduced color
set. VisualSEEk’s approach allows searching for multiple regions
in images and allows for spatial constraints of the regions.

In BlobWorld [4] a high-dimensional space is constructed from
the image’s L*a*b color space, its textures, and, regions that have
the same color/texture. These regions are called blobs. Feature
vectors are matched with a weighted Euclidean distance function.
The improvement of BlobWorld with respect to QBIC is that the
index holds ‘things’ (i.e. objects) rather than low-level ‘stuff’ It



is shown that BlobWorld works well for distinctive scene images
(e.g. tigers, chectahs or zebras). However, there are classes for
which the system does not work well (in particular planes). The
problem with this particular class is that the object that is looked
for has a common color and texture.

Noise Free Queries (NFQs) [15] are queries where the object
a user is interested in is described in a precise manner. NFQs are
matched in multi-scale manner onto the image set by using a sim-
ilarity measure. In some respect, a NFQ is similar to a single-spot
match. The difference between Vu er al.’s approach and our ap-
proach is that we have taken the queries a step further: we de-
scribe actual shapes and describe the interrelationship between sin-
gle spots through a multi-spot vector.

There exist many other systems and solutions that implement
content-based image retrieval [8, 9, 13, 7, 12]. Unfortunenately,
space considerations prohibit us to describe all of them seperately.

3. SPOTS

We define an image spot as a region from an image that, according
to the user, is an important part of the image. Basically, users select
spots from images, when they want to find examples of such sub-
images in other images. To select a spot, users first select an image
arca before informing the system which spot colors are interesting.

Through selecting colors, shapes of objects can become appar-
ent. Object-based image retrieval systems such as BlobWorld [4]
pre-calculate objects through colors and/or textures. Often, how-
ever, objects are colored in multiple colors. For example, a color of
skin as is shown in Figure 1 has two colors: only by combining the
colors, an ellipsoid-like shape can be distinguished. It is for this
reason we do not pre-calculate shapes: currently it is unknown how
to combine colors to construct an object a priori. Instead, our in-
dex only stores the location and coloring information of dominant
colors in images. During search, we reconstruct shapes a posteri-
ori from the dominant colors and store those shapes in so-called
structures. Our search engine only matches structures.

We allow two sets of colors to be selected in spots: fore- and
background colors. Foreground colors are used to select the object
the user is interested in, background colors are used to position the
object in its background. In the face example, the eyes and mouth
are embedded in a background of skin colors. For now, users can
only indicate a single set of fore- or background colors, but we
envision our system to be extended with support for conjunctions
and disjunctions.

The embedding of foreground structures in backgrounds can
be indicated in the four directions. Each of the directions can be
selected separately or through any combination. This means that
for the face example, users can select where they would like to find
the background sky: above, next to or underncath the ecycs and
mouth. This embedding constraint allows users to remove those
objects from the answer set that can never satisfy the request.

All spots (or in fact, structures) have a shape. Currently, there
is a trivial shape ‘gravity point’ and a more claborate shape ‘cl-
lipsoid.” The gravity point shape is primarily used for small area
objects (e.g. the eyes and mouth of a face). The cllipsoid shape is
used to describe whole areas. The skin of a face can be selected
through an ellipsoid.

The set of spots inside an image form a so-called multi-spot.
The multi-spot records the distance d and angle 6 between the
gravity or center point of the shapes. le., the multi vector shows
how to reach the next spot from the current spot.

4. THE DATABASE

For each image, the database stores the location and size of the
dominant colors for an area in a quad-tree representation. The rea-
son for using this type of index is primarily for optimization pur-
poses: it turns out that with our quad-tree segmentation algorithm,
a 100 K-pixel image can be approximated by only a few kilobytes
worth of database tables.

The image index itself is stored in Monet, a main-memory
database engine [1]. All image structures are laid out in main
memory in such a manner that we do not have to worry about disk
/O performance. We run the database on a 32-processor, 64 Gb
main-memory machine, which is capable of storing a color index
for more than 1 M images. Note that at the moment (by far) we do
not use the full capacity of our server’s memory.

The quad-tree representation of the image is not used for the
actual search process itself. Instcad, when the databasc is accessed
for searching and a number of fore- and background colors are
presented, the quad trees are converted into structures through the
help of a 128x128 image matrix: relevant colors are copied from
the quad tree into the image matrix. Afterwards, the image ma-
trix is processed to extract the relevant image structures or shapes,
which are stored in Monet temporary tables.

Structures are the primary scarch data structure. For each ma-
trix line, the structure describes the starting x and y location and
the width and height of the line. All search engine steps know how
to deal with these structures.

5. SPOT SEARCHING

Once a multi-spot query is formulated, the query is sent to the
search engine for processing. In the database, a query processor
parses the query, it derives the search paramecters and drives the
search operation by sending search requests to the actual database.

Database searching happens in several phases. First, our database
index is combined with the user’s selected colors, and the struc-
tures are synthesized from the quad trees. Based on these struc-
tures, gravity points are calculated, which are used for the back-
ground embedding (or enclosure) tests. Finally, all remaining struc-
tures are used for a multi-spot match and all foreground structures
are discarded that do not satisfy the user selected multi-spot.

The reason for splitting up the search process in several phases
in a pipelinc is for optimization purposes. We try to prunc away
as many structures as possible in simple and cheap tests before
applying expensive operations on the intermediate results. Also,
caching techniques may help to reduce processing time by keeping
intermediate search results available.

As said, in the first phase the quad-tree color index is traversed
and, with the user selected colors, organized in structures. For
cach image considered, our search engine creates a data structure
for all closed regions in either the fore- or background colors. The
created structures are made available in our database for further
processing.

Once the structures have been created, our search engine cal-
culates the horizontal and vertical gravity points of each structure.
These gravity points are the initial main point of interest for the
structure and are used for testing the embedding of the foreground
in the background structures. Note that the gravity point here does
not have to be the real gravity point of the object: if the desired
object is occluded or overlapped by an other object in almost same



color (e.g. a yellow and green balloon on green fields), the calcu-
lated gravity may be located at a different location due to the in-
fluence of the overlapping object. Although this may seem wrong,
the effects are limited: the gravity points are, in this phase, only
used for testing the embedding which does not change.

Next, the foreground gravity points are tested for their embed-
ding in the background structures. For each image, all foreground
gravity points are analyzed by scanning over the background struc-
tures once. Structures that do not satisfy the embedding constraint
are discarded.

At the final step, all foreground structures are interrelated with
cach-other. Currently two types of shapes can be detected: gravity
points and ellipsoids. The computed gravity points are used to
correlate gravity points of multi-spots. The search engine adjusts
the distances and angles of a multi-spot match in the original image
to what is available in the considered image. For example if the
distance between two spots in the original image is d,, while the
distance in the considered image is d.., a multiplication of m = %&
is used to match the other points in the multi-spot. Likewise, the
scarch engine also calculates a constellation of the multi-spot c.
This constellation represents the rotation of the multi-spot in other
images. To allow for some degree of fuzzy matching, the user can
supply a number of parameters that determine maximum offsets to
both m and a.

Recall that the calculated gravity points are not correct. When
an object is occluded by another similarly colored object, the cal-
culated gravity point is shifted from the desired gravity point. This
implies that candidate structures may be dropped while they would
have matched the criteria. This problem is reduced by applying
gravity point matching only to distinctive objects in the query. We
will work on this problem for future versions of our search engine.

Other shapes, like ellipsoids, are matched differently. Since
there can be many places where to position an ellipsoid even when
m and o are restricted by the user, only a single instance of an
cllipsoid is considered. First, a center point for the ellipsoid is
calculated based on earlier matched gravity points.! Based on the
center point, m, « and ¢, the constellation of the cllipsoid, an in-
ternal representation of the desired ellipsoid is calculated. This
internal representation of the ellipsoid is matched with the fore-
ground structures. When a sufficiently large portion of the ellip-
soid matches, the selected area is approved as a match.

6. RESULTS

We have not yet performed a formal evaluation of our system and
our approach. Instead, we have selected a number of sample queries
and fired those on our database. This section reviews the strengths
and weaknesses learned from analyzing the results obtained.

We have formulated a number of queries with our query for-
mulation tool.> One of the first queries we performed was a face
detection query. Here we used a random image with a face from
the COREL image set, and selected those parts from the image we
thought were interesting for the request.

Figure 1 shows both the original image and the spots we have
defined inside the face image. When faces are searched in an im-
age database, the most characteristic parts of the face are the eyes,
the mouth and the ellipsoid shape of the head. Hence, when for-
mulating a query, those are precisely the parts of the image that are

INote that this implies that a multi-spot search must include at least two
gravity point shapes.
2http://riem.cwi.nl:8080/~peterb/spotter.html

Figure 1: Face query.

selected as query spots. As for selecting shapes, by selecting fore-
and background colors, shapes of objects become apparent. For
example, when selecting the skin color in the face spot, all arcas
in this color are shown as a single shape. Likewise, the lips of the
face have a distinctive red color.

Once fore- and background colors have been identified, the
user can attach a base shape to the selected object. For the eyes
and the mouth of the face it is sufficient to select a gravity point: a
point that identifies the location of the object. An ellipsoid is used
to identify the shape of the head.

The arrows in the image show the enclosure of the foreground
object within the background object. Here, the eyes and the mouth
need to be enclosed by a background (the skin) in all directions.
Since we would like to select all images with a face, we do not
specify a background for the ellipsoid: any background structure
applies.

When this particular query is fired at a limited set of images
in our database, a number of images are retrieved as is shown in
Figure 2. Clearly, there are some good results for this request. The
original query image is found, but also two additional images of
faces. It is obvious that the first image is a match — both images are
look-alikes. If, however, the histograms of the spots are compared,
the images are radically different. So, this image would probably
not be found with traditional whole-image search algorithms. The
same goes the image from the Africa set in the COREL image set.
The recason why this image matched is because in our color space,
the color of skin is racially independent.

Clearly, there arc some undesired results in the answer sct.
These images match for the simple reason that they match the
query specification precisely. So, the query was not articulated
sufficiently precise to remove these from the answer set.

As described earlier, we use the Itten-Runge color space for
segmentation and searching. In particular, we use a limited set of
this color space containing a total of 16 colors, ignoring saturation
and brightness. The sparseness of this color space used causes a
number of unwanted images to be selected easily. In the future, we
will revert to other, more elaborate, color spaces such the L*a*b
or L*u*v color spaces [5].

7. FUTURE WORK

The most important change that we would like to perform is to
remove the dependency on gravity points to match shapes. Cur-
rently, at least two gravity points are required to match spots. In an



Figure 2: Face query results.

Figure 3: Butterfly queries.

image, many candidate places exist for matching arbitrary shapes,
given a variable rotation and scaling. We use the gravity points
to find a possible location of the shape, and then test if that area
is covered by the shape’s colors. However, given the earlier de-
scribed problems with gravity points, we would like to match shapes,
rather than gravity points. Consider, for example, Figure 3. The
query one would like to ask here is: ‘find all images with the five
ellipsoids in the colors of the wings and body of the butterfly’.
Currently we do not have support for this type of query.

Another limiting factor in our search engine is the reliance on
a single set of fore- and background colors. Given, for example,
the butterfly that is shown in Figure 3. The query formulated in this
figure will only find other butterflies that have brown wings. It is
quite likely, however, that a user finds other butterflies in different
color settings similarly good results. Hence, the used fore- and
background colors that are used in the selection criteria should not
be limited to a single set. We would like to include conjunctive
and disjunctive clauses as well in our queries.

8. SUMMARY

We have built a prototype of a search engine with which users can
articulate their precise interest in a sub-image. With these precise
descriptions, we can find sub-images rather than whole images.
We think this is an important contribution to the image search field,
which has up until now primarily focussed on whole image match-
ing, or matching with global features.

We realize that our system is not finished. There are a number
of areas where we can extend and improve our work. The most
important improvement in our scarch engine will be sub-image
matching on image structures, which are instantiated in an on-line
manner.

But, given the results we have obtained so-far, we belicve that
our approach is a valid one.

9. REFERENCES

[1] P. A. Boncz and M. L. Kersten. MIL Primitives for Querying
a Fragmented World. VLDB Journal, 8(2):101-19, 1999.

[2] Peter Bosch, Arjen de Vries, Niels Nes, and Martin Kersten.
A case for Image Quering through Image Spots. SPIE 13th
International Symposium: Electronic Imaging 2001 (San Jose,
CA), pages 20-30. IS&T/SPIE, January 2001.

[3] Peter Bosch, Niels Nes, and Martin Kersten. Navigating
through a forest of quad trees to spot images in a database.
INS-R0007. Center for Mathematics and Computer Science
(Ccwi), Amsterdam, 2000.

[4] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and
J. Malik. Blobworld: A System for Region-Based Image In-
dexing and Retrieval. Third International Conference Visual
Information and Information Systems. Springer-Verlag, 1999.

[5] Alberto Del Bimbo. Chapter 2, Image retrieval by colour sim-
ilarity. In Visual Information Retrieval, pages 97-99. Morgan
Kaufmann Publishers, Inc., 1999.

[6] Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jon Ash-
ley, Qian Huang, Byron Dom, Monika Gorkani, Jim Hafner,
Denis Lee, Dragutin Petkovic, David Steele, and Peter Yanker.
Query by Image and Video Content: the QBIC system. RJ-
9949 (87908). 1BM Research Division, Almaden Research
Center, 30 March 1995.

[7] Jing Huang, S. Ravi Kumar, Mandar Mitra, Wei-Jing Zhu, and
Ramin Zahib. Spatial Color Indexing and Applications. Inrer-
national Journal of Computer Vision, 35(3):245-268, 1999.

[8] Greg Pass and Ramin Zahib. Histogram refinment for content-
based image retrieval. IEEE Workshop on Applications of
Computer Vision, pages 96-102. IEEE, 1996.

[9] Greg Pass and Ramin Zahib. Comparing Images Using Joint
Histograms. Journal of Multimedia Systems, 7(3):234-240,
1999.

[10] Harpreet S. Sawhney and James L. Hafner. Efficient Color
Histogram Indexing for Quadratic Form Distance Functions.
RJ-9572 (83578). IBM Research Division, Almaden Research
Center, 28 October 1993.

[11] John R. Smith and Shih-Fu Chang. Tools and Techniques for
Color Image Retrieval. SPJE, volume 2670. SPIE, 1630-9.
[12] D. McG. Squire, W. Miiller, H. Miiller, and J. Raki. Content-
based query of image databases, inspirations from text re-
trieval: inverted files, frequency-based weights and relevance
feedback. The 11th Scandinavian Conference on Image Anal-

ysis, pages 7-11, June 1999.

[13] Markus Stricker and Alexander Dimai. Color Indexing with
Weak Spatial Contraints. SPIE 96, pages 1-12, 1996.

[14] Michael Swain and Dana Ballard. Color indexing. Inferna-
tional Journal of Computer Vision, 7(1), 1991.

[15] Khanh Vu, Kien A. Hua, and JungHwan Oh. A noise-free
similiraty model for image retrieval systems. Storage and Re-
trieval for Media Databases, SPIE 2001 (San Jose, CA), vol-
ume 4315, pages 1-11. SPIE, January 2001.



